Optimality Conditions for Vector Optimization with Set-Valued Maps
نویسنده
چکیده
In this paper, we establish a Farkas-Minkowski type alternative theorem under the supposition of nearly semiconvexlike set-valued maps. Based on the alternative theorem and some other lemmas, we present necessary optimality conditions and sufficient optimality conditions for set-valued vector optimization problems with extended inequality constraints in a sense of weak E-minimizers.
منابع مشابه
Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملOptimality Conditions for Vector Optimisation with Set-valued Maps
In recent years, vector optimisation with set-valued maps in infinite dimensional spaces has been received an increasing amount of attention. See [6, 2, 5, 8, 4, 9] and references therein, for its extensive applications in many fields such as mathematical programming, optimal control, management science. Vector optimisation with setvalued maps, sometimes called set-valued vector optimisation fo...
متن کاملOn -optimality Conditions for Convex Set-valued Optimization Problems
In this paper, -subgradients for convex set-valued maps are defined. We prove an existence theorem for -subgradients of convex set-valued maps. Also, we give necessary optimality conditions for an -solution of a convex set-valued optimization problem (CSP). Moreover, using the single-valued function induced from the set-valued map, we obtain theorems describing the -subgradient sum formula for ...
متن کاملNecessary optimality conditions of a D.C. set valued bilevel optimization problem
In this paper, we consider a bilevel vector optimization problem where objective and constraints are set valued maps. Our approach consists of using a support function [1, 2, 3, 14, 15, 32] together with the convex separation principle for the study of necessary optimality conditions for D.C bilevel set valued optimization problems. We give optimality conditions in terms of the strong subdiffer...
متن کاملHölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002